





**BLASTING TECHNICAL INFORMATION** 



## **TABLE OF CONTENTS**

| BLAST FINISHING                                              | 3    |
|--------------------------------------------------------------|------|
| FACTORS THAT AFFECT BLAST FINISHING                          | 4    |
| FACTORS THAT AFFECT BLAST FINISHING (CONT'D)                 | 5    |
| FACTORS THAT AFFECT BLAST FINISHING (CONT'D)                 | 6    |
| FACTORS THAT AFFECT BLAST FINISHING (CONT'D)                 | 7    |
| FACTORS THAT AFFECT BLAST FINISHING (CONT'D)                 | 8    |
| FACTORS THAT AFFECT BLAST FINISHING (CONT'D)                 | 9    |
| ALL INDUSTRIAL BLAST SYSTEMS HAVE THE FOLLOWING COMPONENTS : |      |
| BLAST MEDIAS                                                 |      |
| BLAST MEDIAS (CONT'D)                                        | . 14 |
| BLAST MEDIAS (END)                                           | . 15 |
| HOW TO MEASURE SURFACE PROFILE USING TESTEX TAPE             | . 16 |
| OUR MISSION                                                  | . 17 |



# THE REFERENCE IN SURFACE TREATMENT

#### **BLAST FINISHING**

Blasting is the process where small angular or spherical particles are propelled at a part by compressed air, or mechanical high speed rotating wheels or water pumps.

The blast media type, shape, size, density, and hardness, along with media acceleration and volume of media, combined with blasting distance from the workpiece, angle of impact and time cycles are important factors in the blast process capabilities.

The blasting equipment is produced to deliver, reclaim and contain the media, contain the part to be blasted and collect the dust from the blasting process. Parts can be processed individually as a batch process or can be automated thru the system.

#### SURFACE AFFECTS FROM THE BLASTING PROCESS ARE:

| VISUAL                         |
|--------------------------------|
| Bright Matte finish            |
| Dull Matte Finish              |
| Satin finish                   |
| Satin luster finish            |
| Blending of tool marks         |
| Removal of weld discoloration  |
| Surface cleaning               |
| Glass frosting and etching     |
| Pre plate and anodize finishes |

| MECHANICAL                     |     |
|--------------------------------|-----|
| Deburring                      |     |
| De-flashing                    |     |
| Paint and coating removal      |     |
| Peening                        |     |
| Pre paint and coating adhesion | n   |
| Heat treat, mill scale remov   | al  |
| Weld splatter removal          |     |
| Thermal metal spray preparat   | ion |
| Rust removal                   |     |
| Mold cleaning                  |     |

ISTOPSI



## MEDIA DELIVERY SYSTEMS

FACTORS THAT AFFECT BLAST FINISHING

There are three media delivery systems that propel and deliver media for high speed impact to the part being processed:

Air Blasting (Pneumatic) Mechanical Wheel (Airless blasting) Hydro blasting (Pumped water)

#### **A**IR BLASTING

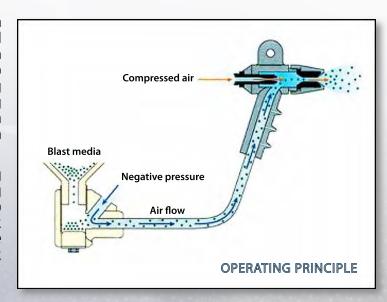
utilizes an air compressors energy to deliver air/media mix at speeds and volumes to impact the parts being processed.

The air speed or pressure of an air compressor is controlled by a pressure regulator. The regulator can increase or decrease the speed of the media delivery. Air pressure is measured by pounds per square inch (psi), industrial blasting is effectively done between 20 and 90 PSI. The higher the PSI the higher the air speed.

The volume delivered of the air/media mix is determined by the orifice or opening diameter of the nozzle with pressure blast systems or air jet diameter of the suction blast gun body. Air volumes are measured by surface cubic feet per minute (scfm). The larger the orifice ID opening the larger volume of air/media. Other factors that affect volume of air into the blast system is media and air hose diameter. Increased air pressure (PSI) also increases the SCFM with a given size orifice.

Industrial blasting gun bodies of suction cabinet blast systems range between 12 to 38 SCFM. The pressure blast cabinet systems range between 12 to 68 scfm and the pressure blast room systems use up to 254 scfm.

Industrial air compressors produce approximately 4.5 SCFM per horse power (hp). Blasting cabinets require 3 to 15 hp compressors per nozzle and blast rooms can use up to 53 h.p. per man or nozzle.


#### THERE ARE TWO TYPES OF AIR BLAST DELIVERY SYSTEMS:

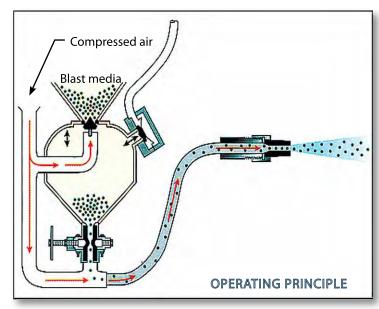
**SUCTION** (used in blast cabinets) **PRESSURE** (used in blast cabinets, blast rooms, and outdoor blasting)

#### Suction

Blasting uses the venture principle sucking media from a hopper. The air jet is 1/2 the ID of the nozzle and as the air stream is passed through both, it creates a suction which sucks the media from the hopper into the air stream. The media acceleration distance is very short (from the nozzle to the workpiece (approximately 4 to 14"). The suction system works fine and can continuously blast as long as there is blasting media in the hopper.

Suction systems have limits on their suction capacity and on propelling heavier media. Very heavy blasting media (larger steel media) cannot be conveyed into the air stream with suction blasting. However, most industrial blast cabinets use suction systems due to their lower cost and because work well for most applications.






#### FACTORS THAT AFFECT BLAST FINISHING (CONT'D)

#### **P**RESSURE

The pressure pot contains the media, and as it is energized with compressed air, it pressurizes the pot. When the air/media mix is released from the pot, it accelerates from the pot through at least 5–10 feet of hose and then even faster as it travels through the Venturi of the nozzle. The acceleration rates of air/media mix are much higher in pressure blasting than suction blasting.

When the pressure pot empties of the media, it has to be depressurized to refill the pot with media. The pressure blasting systems are much more productive than suction systems. Pressure systems can blast all medias regardless of their weight or size, but they require a minimum of 25 psi to operate.



#### **AIR BLAST SYSTEMS - AIR CONSUMPTION RATES**

Below are charts of air volume (SCFM) used in blasting with pressure and suction systems utilizing various pressures (PSI) and orifice sizes.

#### **CABINET BLAST SYSTEMS - AIR REQUIREMENTS (scfm)**

#### **SUCTION SYSTEMS**

#### Pressure Systems

| Pressure (psi)           | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | Pressure (psi) | 20 | 30 | 40 | 50  | 60  | 80  | 100 | 120 |
|--------------------------|----|----|----|----|----|----|----|-----|----------------|----|----|----|-----|-----|-----|-----|-----|
| 1/4" nozzle<br>3/32 jet  | 6  | 7  | 8  | 10 | 11 | 12 | 13 | 15  | 1/8" nozzle    | 6  | 8  | 10 | 13  | 14  | 17  | 20  | 25  |
| 1/4" nozzle              | 10 | 12 | 15 | 17 | 19 | 21 | 23 | 26  | 3/16" nozzle   | 15 | 18 | 22 | 26  | 30  | 48  | 45  | 55  |
| 1/8 jet                  | '  |    |    | ., |    |    |    |     | 1/4" nozzle    | 27 | 32 | 41 | 49  | 55  | 68  | 81  | 97  |
| 5/16" nozzle<br>5/32 jet | 15 | 19 | 23 | 27 | 31 | 37 | 38 | 42  | 5/16" nozzle   | 42 | 50 | 64 | 78  | 88  | 113 | 137 | 152 |
| 7/16" nozzle<br>7/32 jet | 31 | 38 | 45 | 52 | 59 | 66 | 73 | 80  | 3/8" nozzle    | 55 | 73 | 91 | 109 | 126 | 161 | 196 | 220 |





#### FACTORS THAT AFFECT BLAST FINISHING (CONT'D)

#### **BLAST ROOMS AND OUTDOOR SYSTEMS - AIR REQUIREMENTS**

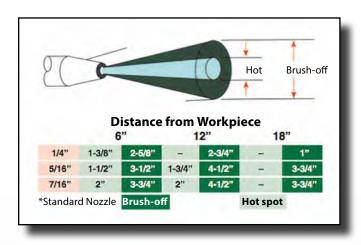
Air consumption and media delivery rates are much higher on blast rooms and outdoor blasting systems than in pressure blast cabinets. The air supply hose ID, the media blast hose ID, the nozzle ID, the pressure pot and pot piping are all much larger on the blast rooms than cabinet systems. The increase in production is also due to the further distance that the nozzle is from the work piece in blast rooms creating a larger blast pattern.

#### Pressure-blast requirements (blast rooms)

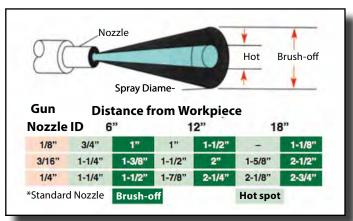
|             |                   | Pressure |       |       |       |       |       |
|-------------|-------------------|----------|-------|-------|-------|-------|-------|
| Nozzle ID   |                   | 60       | 70    | 80    | 90    | 100   | 120   |
| 2/16//      | AIR (CFM)         | 30       | 33    | 38    | 41    | 45    | -/-   |
| 3/16"<br>#3 | Air compressor hp | 7        | 7.5   | 8     | 9.5   | 10    | -/-   |
| #5          | Lbs Sand hour     | 171      | 196   | 216   | 238   | 264   | -/-   |
| 4 / 4 //    | AIR (CFM)         | 54       | 61    | 68    | 74    | 81    | 97    |
| 1/4"<br>#4  | Air compressor hp | 12       | 13.5  | 15    | 16.5  | 18    | 21.5  |
| <i>"</i> -4 | Lbs Sand hour     | 312      | 354   | 406   | 448   | 494   | 582   |
|             | AIR (CFM)         | 89       | 101   | 113   | 126   | 137   | 152   |
| 5/16"<br>#5 | Air compressor hp | 20.0     | 22.5  | 25.5  | 28.0  | 30.5  | 34.0  |
| #3          | Lbs Sand hour     | 534      | 604   | 672   | 740   | 812   | 912   |
|             | AIR (CFM)         | 126      | 143   | 161   | 173   | 196   | 220   |
| 3/8″<br>#6  | Air compressor hp | 28       | 32    | 36    | 38.5  | 44    | 49    |
| "0          | Lbs Sand hour     | 754      | 864   | 960   | 1 052 | 1 152 | 1 320 |
|             | AIR (CFM)         | 170      | 194   | 217   | 240   | 254   | 300   |
| 7/16"<br>#7 | Air compressor hp | 38       | 43.5  | 48.5  | 53.5  | 56.5  | 67    |
|             | Lbs Sand hour     | 1 023    | 1 176 | 1 312 | 1 448 | 1 584 | 1 800 |
|             | AIR (CFM)         | 224      | 252   | 280   | 390   | 338   | 392   |
| 1/2"<br>#8  | Air compressor hp | 50       | 56    | 62.5  | 69    | 75    | 87.5  |
| 110         | Lbs Sand hour     | 1 336    | 1 512 | 1 680 | 1 856 | 2 024 | 2 352 |






#### FACTORS THAT AFFECT BLAST FINISHING (CONT'D)

#### AIR BLAST PRODUCTION RATES


Blast nozzle spray patterns are affected by orifice size, air pressure, and distance from the workpiece.

The total diameter of the blast pattern increases as the distance from the workpiece is increased. The hot spot (where work speed is maximized) can be obtained at larger distances from the workpiece with pressure air blast systems.

#### CABINET SUCTION BLASTING



#### **CABINET PRESSURE BLASTING**



#### **CABINET BLAST PRODUCTION RATES**

Below is an estimate of abrasive delivery rates per hour and sq. ft. of blast area in sq. ft. per minute with various orifice I.D's and 80 psi.

| ID   | CFM | PSI | Blast Area (Sq. Ft/minute) | Abrasive Unit Hour |
|------|-----|-----|----------------------------|--------------------|
| 3/32 | 7   | 80  | 1/2                        | 80 lbs             |
| 1/8" | 15  | 80  | 1 to 1-1/2                 | 120 lbs            |
| 5/32 | 25  | 80  | 1 to 2-1/2                 | 160 lbs            |
| 3/16 | 40  | 80  | 3 to 3-1/2                 | 216 lbs            |
| 1/4" | 80  | 80  | 4 to 4-1/2                 | 400 lbs            |



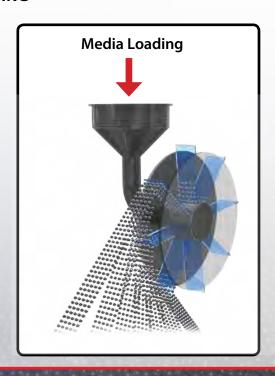
# BLAST ROOM AND OUTDOOR BLAST PRODUCTION RATES

FACTORS THAT AFFECT BLAST FINISHING (CONT'D)

|                          | SPECIFICATIONS<br>Cleaning Per Hour at 9 | ESTIMATED BLAST CLEANING RATES (#7 nozzle) |                  |             |  |  |
|--------------------------|------------------------------------------|--------------------------------------------|------------------|-------------|--|--|
| NI- 4                    | SSPC                                     | -SP5                                       | #7 NOZZLE        |             |  |  |
| No.1 WHITE METAL BLAST   | Loose Mill Scale                         | 170 Sq. Ft                                 | Tight Mill Scale | 140 Sq. Ft  |  |  |
|                          | Pitted Paint                             | 85 Sq. Ft.                                 | Layered Paint    | 70 Sq. Ft.  |  |  |
| No.2                     | SSPC-                                    | SP10                                       | #7 NOZZLE        |             |  |  |
| NEAR WHITE BLAST         | Loose Mill Scale                         | 180 Sq. Ft                                 | Tight Mill Scale | 146 Sq. Ft  |  |  |
|                          | Pitted Paint                             | 90 Sq. Ft.                                 | Layered Paint    | 72 Sq. Ft.  |  |  |
|                          | SSPC                                     | -SP6                                       | #7 NOZZLE        |             |  |  |
| No.3<br>COMMERCIAL BLAST | Loose Mill Scale                         | 420 Sq. Ft                                 | Tight Mill Scale | 270 Sq. Ft  |  |  |
|                          | Pitted Paint                             | 200 Sq. Ft.                                | Layered Paint    | 140 Sq. Ft. |  |  |
| No.4                     | SSPC                                     | -SP7                                       | #7 NOZZLE        |             |  |  |
| BRUSH - OFF              | Loose Mill Scale                         | 420 Sq. Ft                                 | Tight Mill Scale | 835 Sq. Ft  |  |  |
|                          | Pitted Paint                             | 200 Sq. Ft.                                | Layered Paint    | 825 Sq. Ft. |  |  |

For more information on blast specifications contact info@istblast.com

#### **MECHANICAL WHEEL BLASTING**


**Wheel blast** system utilizes a high speed rotation wheel using centrifugal force to propel the media.

The wheel size design and rotation speed affect the velocity and pattern of the media.

The abrasive is fed into the rotating wheel. The impact on the media by the hard rotating wheel usually restricts media selection to a very tough steel or stainless steel shot or grit.

Machines can be built with multiple wheels for automation. Automated systems include basket, table, spinner hangers and continuous conveyor processing.

Wheel blast systems are a less expensive way to blast (due to higher media recycleability and automation) than air blasting by a factor of 10. Their disadvantage are restrictions to very few media.



IST best



### FACTORS THAT AFFECT BLAST FINISHING (CONT'D)

#### **HYDRO BLASTING**

This blasting system uses a pressurized water stream generated by pumps that are capable of pumping an abrasive charged water supply at high rates of speed.

The Hydro Systems are good for conveying very fine abrasives. They are also used in cleaning gunky, greasy parts, and containing toxic materials.

The wet blast systems are very good at blasting surfaces without damage and blasting internal surfaces.

#### ALL INDUSTRIAL BLAST SYSTEMS HAVE THE FOLLOWING COMPONENTS:

- Delivery Systems (Air or Wheel Blasting)
- Containment Systems (Hand cabinets, Automated enclosures, and Blast rooms)
- Reclaim Systems
- Dust Collection

#### **CONTAINMENT SYSTEMS**

Hand cabinets, automated enclosures and blast rooms are built to handle various size and shapes of parts. The containment systems are built to control and contain the blast media and parts within the enclosures. The enclosure systems use gravity for the blasted media to drop down to a collection area so the media can be conveyed to the reclaim system. Blast systems can have inexpensive or premium containment systems. Matching the right containment system to the application is very important.

#### MEDIA RECLAIM SYSTEMS

Recoverable medias used in industrial blast systems will run from 5 to 100 times through the blast system. These recoverable medias need to be cleaned, sized and returned to the blast system after being blasted. The media reclaim system accomplishes this. The reclaimer keeps finish and production rates consistent. Media reclaim systems can be Air Cyclones or Mechanical Systems.

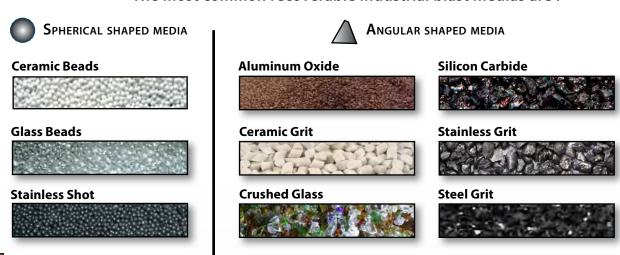
#### **DUST COLLECTION**

All Industrial blast systems utilize dust collectors to allow blast systems to be indoors. The dust collector removes the fine blasting dust keeping the media clean and operators safe through visibility and breathable air. Dust collectors remove 99% of 1 micron or larger material. Hepa filters can be added to remove dust particles down to 1/2 micron. Dust collectors are sized to the cabinet size, media type, and amount of blast nozzles or wheels being used.



#### **BLAST MEDIAS**

Recoverable blasting medias are used in industrial blasting. Indoor blasting systems require medias with extended life. Blast media, type, shape, size and hardness affect the process and materials they are capable of blasting.


Spherical medias are used for peening and produce smoother surface finishes.

Angular medias chip at a parts surface; removing paint, rust and scale quicker, with better results than round medias. Angular medias produce a rougher surface finish and produce superior anchor patterns for paint and coating adhesions.

Higher blast pressures increase production but reduce media life. Blasting harder workpieces also reduces media life.

Recoverable blasting medias have two basic shapes. Round (spherical) and angular.

#### The most common recoverable industrial blast medias are:



**Aluminum Oxide** (AL<sub>2</sub>O<sub>3</sub>) is a man made fused alumina that is very tough and angular blocky shaped, medium density, with a hardness of 9 on the Mohs scale. This abrasive is designed for high blasting pressures up to 90 PSI. Aluminum oxide is very good for light deburring and surface prep (bonding strength) prior to painting and coating. AO creates a dull matte finish. Aluminum oxide has media life of approximately 10-12 times through the blast system.

#### TYPICAL ALUMINUM OXIDE BLASTING APPLICATIONS

Grit Inches Microns

- Cleaning of investment castings
- Scale removal
- Thermal spray coating preparation
- Rust removal
- Hard oxide removal
- Heat treat and mill scale removal
- Glass frosting and etching
- Monument lettering and carving
- Aircraft engine overhaul
- Matte finishing
- Surface preparation
- Durability up to 20 passes

| Size | (average) | (average) |
|------|-----------|-----------|
| 16   | 0.043     | 1092      |
| 20   | 0.037     | 942       |
| 24   | 0.027     | 686       |
| 30   | 0.022     | 559       |
| 36   | 0.019     | 443       |
| 46   | 0.014     | 356       |
| 54   | 0.012     | 305       |

254

**Grit Size Conversion for AO and SIC** 

| Grit<br>Size | Inches<br>(average) | Microns<br>(average) |
|--------------|---------------------|----------------------|
| 70           | 0.008               | 203                  |
| 80           | 0.0085              | 165                  |
| 90           | 0.0057              | 145                  |
| 100          | 0.0048              | 122                  |
| 120          | 0.0048              | 102                  |
| 150          | 0.0035              | 89                   |
| 180          | 0.0030              | 76                   |
| 220          | 0.0025              | 63                   |

0.010

60



## **BLAST MEDIAS (CONT'D)**

**Silicon Carbide (SIC)** is a man made abrasive that is very sharp and friable. SIC is very hard at 9.5 on the mohs scale. It is used to blast very hard materials such as tool steels, glass and ceramics. SIC creates a dull matte finish. The grit sizes available are the same sizes as aluminum oxide. SIC blasts at pressures up to 90 psi and has an approximate life of 9-12 times thru the blast system.

#### TYPICAL SILICON CARBIDE BLASTING APPLICATIONS

- Blasting hard metals
- Glass etching
- Ceramic recast removal
- Very tough scale removal
- Heavy profile and metal preparation
- Before brazing and weld applications requiring no aluminum oxide contamination

**Grit Size Conversion for AO and SIC** 

**SIZING: SAME AS ALUMINUM OXIDE** 

Glass Beads and Glass Grit are glass beads used in peening and surface finishing on tight tolerance machined surfaces. Glass Beads create a bright matte surface finish with no surface contamination or damage. As a round particle beads are very slow on removal of paint, rust, or scale. Glass grit is the angular counterpart of glass beads. Glass grit is very aggressive on a blasted surface. Glass beads are blasted at pressures between 40-80 psi. Glass bead media life cycles are 9 - 12 times thru the blast system.

#### Typical Glass Bead blasting applications

| _ |      |      |    |     |         |
|---|------|------|----|-----|---------|
|   | 1 10 | ıht  | dΔ | hii | rring.  |
|   | LIV  | 1116 | uc | vu  | HIIIIM. |

- Surface cleaning.
- Peening.
- Blending machine marks.
- Removal of welding discolor.
- Blasting tight tolerance parts.
- Produces a bright matte finish.
- Pre Anodize finishing.

| Mil-G-<br>9954A | Inches<br>(average) | Microns<br>(average) | US Screen Size<br>(Mesh) | Mil-G-<br>9954A | Inches<br>(average) | Microns<br>(average) | US Screen Size<br>(Mesh) |
|-----------------|---------------------|----------------------|--------------------------|-----------------|---------------------|----------------------|--------------------------|
| # 3             | .0282               | 725                  | 20-30                    | # 9             | .0060               | 153                  | 80-120                   |
| # 4             | .0187               | 512                  | 30-40                    | # 10            | .0047               | 120                  | 100-170                  |
| # 5             | .0139               | 363                  | 40-50                    | # 11            | .0039               | 100                  | 120-200                  |
| # 6             | .0105               | 256                  | 50-70                    | # 12            | .0033               | 85                   | 140-230                  |
| # 7             | .0084               | 215                  | 60-80                    | # 13            | .0026               | 68                   | 170-325                  |
| # 8             | .0071               | 181                  | 70-100                   |                 |                     |                      |                          |

**Grit Size Conversion for glass beads** 

Ceramic Blast Media Ceramic Beads are spherical shaped media with high mechanical strength and high wear rates. Ceramic is impact resistance creating very little dust. The ceramic beads keeps its round consistency and is chemically inert. Ceramic blast processes produce a smooth bright satin finish. The ceramic beads density creates higher impact speed making it a good choice for deburring and peening. Blast pressure recommendations are between 40-65 psi with media cycle lives between 70-90 times thru the blast system. Ceramic blast media is very versatile and can be blasted with all delivery systems (air, wheel and water). Ceramic beads is a standard peening material for titanium parts. Ceramic grit is angular and is excellent for etching parts with extended media life.

#### TYPICAL CERAMIC MEDIA BLASTING APPLICATIONS

- Peening Titanium
- Non contamination
- High impact for deburring
- Long media life applications
- Bright surface finish requirements
- Aircraft and medical parts



# THE REFERENCE IN SURFACE TREATMENT

ISTORS

#### **BLAST MEDIAS (CONT'D)**

Stainless Steel Blast Media is available in both shot (cut wire conditioned and casted) and grit. Stainless media is available in 302-304 and 316 alloys. Stainless is a softer but heavier media that is a good choice for short blasting times, deburring, and rust free surfaces. It produces a brighter finish with reduced blast machine wear rates. Stainless shot obtains some the highest media recovery rates of up to 150-200 cycles through the blast system. Blasting pressure can be as high as 90 PSI.

#### Typical Stainless Steel blasting applications

- Blast cleaning, deburring, surface refinement, surface finishing
- All types of aluminum castings and forgings
- Zinc pressure die castings
- Non-ferrous metals and special alloys
- Stainless steel castings and forgings
- Stainless steel equipment fabrication
- Granite and stone industry

Steel Shot and Grit Media is produced in round/spherical shape (conditioned cut wire and cast shot) and angular steel grit. Steel abrasives are very durable making it the first choice in blast rooms and automated wheel applications. The hardness ranges between 40 to 65 Rockwell. Conditioned cut wire (rounded) is the primary choice for shot peening over cast shot that produces an unfavorable angular breakdown while blasting. Steel shot and grit is very often mixed to achieve both anchor patterns with good finishes. Steel shot can be blasted with very high pressures ofup to 110 PSI. Media cycle lives are between 80-100 times through the blast cycle.

#### Typical Steel Shot and Grit blasting applications

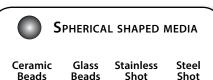
- Blast Rooms for long media life
- Wheel blasting for long media life
- Paint preparation on steel parts
- Deburring
- Scale and rust removal
- Aluminum Casting and weldment blasting
- Pipe blasting (ID & OD)



# BLAST MEDIAS (CONT'D)

# SHOT AND GRIT SIZING

|      | STEEL SHOT             |               |
|------|------------------------|---------------|
|      | All Pass No. 12 Screen | .0661- 1.70   |
| C200 | 5% Max on #14 Screen   | .0555 - 1.40  |
| S390 | 85% Min on #18 Screen  | .0394 - 1.00  |
|      | 96% Min on #20 Screen  | .0331 - 0.850 |
|      | All Pass No. 12 Screen | .0555 - 1.40  |
| C220 | 5% Max on #14 Screen   | .0469 - 1.18  |
| S330 | 85% Min on #18 Screen  | .0331 - 0.85  |
|      | 96% Min on #20 Screen  | .0278 - 0.710 |
|      | All Pass No. 16 Screen | .0469- 1.18   |
| 6200 | 5% Max on #18 Screen   | .0394 - 1.00  |
| S280 | 85% Min on #25 Screen  | .0278 - 0.710 |
|      | 96% Min on #30 Screen  | .0234 - 0.600 |
|      | All Pass No. 18 Screen | .0394 - 1.00  |
| S230 | 10% Max on #20 Screen  | .0331 - 0.850 |
| 3230 | 85% Min on #30 Screen  | .0234 - 0.600 |
|      | 97% Min on #35 Screen  | .0197 - 0.500 |
|      | All Pass No. 20 Screen | .0331- 0.850  |
| C170 | 10% Max on #25 Screen  | .0278 - 0.710 |
| S170 | 85% Min on #40 Screen  | .0165 - 0.425 |
|      | 97% Min on #45 Screen  | .0139 - 0.355 |
|      | All Pass No. 30 Screen | .0234- 0.600  |
| C110 | 10% Max on #35 Screen  | .0197 - 0.500 |
| S110 | 80% Min on #50 Screen  | .0117 - 0.300 |
|      | 90% Min on #80 Screen  | .0070 - 0.180 |


| STEEL GRIT |                        |                |  |  |  |
|------------|------------------------|----------------|--|--|--|
|            | All Pass on #16 Screen | .0469- 1.18    |  |  |  |
| G25        | 70% Max on #25 Screen  | .0278 - 0.710  |  |  |  |
|            | 80% Min on #40 Screen  | .0165 - 0.425  |  |  |  |
|            | All Pass on #18 Screen | .0394 - 1.00   |  |  |  |
| G40        | 70% Max on #25 Screen  | .0165 - 0.425  |  |  |  |
|            | 80% Min on #40 Screen  | .0117 - 0.300  |  |  |  |
| G50        | All Pass on #25 Screen | .0278 - 0.710  |  |  |  |
|            | 65% Max on #50 Screen  | .0017 - 0.300  |  |  |  |
|            | 70% Min on #80 Screen  | .0070- 0.180   |  |  |  |
|            | All Pass on #50 Screen | .0165 - 0.0425 |  |  |  |
| G80        | 60% Max on #80 Screen  | .0070 - 0.180  |  |  |  |
|            | 75% Min on #120 Screen | .0049 - 0.125  |  |  |  |
| G120       | All Pass on #50 Screen | .01117- 0.300  |  |  |  |
|            | 60% Max on #120 Screen | .0049 - 0.125  |  |  |  |
|            | 70% Min on #200 Screen | .0029 - 0.075  |  |  |  |



# **BLAST MEDIAS (CONT'D)**

#### **MEDIA OVERVIEW:**

#### RECOVERABLE BLASTING MEDIAS





Angular shaped media

Oxide

Aluminium Ceramic Crushed

Plastic

Silicon Stainless Steel

Walnut Shells

| Grit | Glass | Garnet | Media | Carbide | Grit | Gr |
|------|-------|--------|-------|---------|------|----|
|      |       |        |       |         |      | C. |

| Media Guide                          | Glass<br>Beads | Ceramic<br>Grit | Stainless<br>Cut Wire | Steel<br>Shot    | Steel<br>Gri   | Alumi-<br>nium<br>Oxide | Silicon<br>Carbide | Garnet | Crushed<br>Glass | Plastic<br>Media  | Walnut<br>Shells |
|--------------------------------------|----------------|-----------------|-----------------------|------------------|----------------|-------------------------|--------------------|--------|------------------|-------------------|------------------|
| Finishing                            | YES            | YES             | YES                   | YES              | YES            | YES                     | YES                | YES    | YES              | NO                | NO               |
| Cleaning/Removal                     | YES            | YES             | YES                   | YES              | YES            | YES                     | YES                | YES    | YES              | YES               | YES              |
| Peening                              | YES            | YES             | YES                   | YES              | NO             | NO                      | NO                 | NO     | NO               | NO                | NO               |
| Surface Profiling (Etch)             | NO             | NO              | YES                   | NO               | YES            | YES                     | YES                | YES    | YES              | YES               | YES              |
| Working Speed                        | MED.           | MED.            | MED.                  | MED.             | MEDHIGH        | HIGH                    | VERY HIGH          | HIGH   | HIGH             | MEDHIGH           | LOW-HIGH         |
| Recyclability                        | HIGH-LOW       | HIGH            | HIGH                  | VERY HIGH        | VERY HIGH      | MEDHIGH                 | MEDLOW             | MED.   | MEDLOW           | MED.              | LOW              |
| <b>Probability of Metal Removal</b>  | VERY LOW       | VERY LOW        | VERY LOW              | VERY LOW         | MED.           | MEDHIGH                 | MEDHIGH            | MED.   | LOW-MED.         | VERY LOW          | VERY LOW         |
| Hardness, MOH Scale<br>(Rockwell RC) | 5.5            | 7<br>(57-63)    | 6-7.5<br>(35-55)      | 6-7.5<br>(35-55) | 8-9<br>(40-66) | 8-9                     | 9                  | 8      | 5.5              | 3-4               | 1-4.5            |
| Bulk Density (lb/cu.ft.)             | 100            | 150             | 280                   | 280              | 230            | 125                     | 95                 | 130    | 100              | 45-60             | 40-80            |
| Mesh Size                            | 30-<br>440     | 8-46            | 20-62                 | 8-200            | 10-325         | 12-325                  | 36-220             | 16-325 | 30-<br>400       | 12-80             | MANY             |
| Typical Blast Pressure               | 20-55          | 20-90           | 20-90                 | 20-90            | 20-90          | 20-90                   | 20-90              | 30-80  | 20-50            | 20-60             | 10-40            |
| Shapes: ○ or △                       | •              | •               | •                     | •                | Δ              | Δ                       | Δ                  | Δ      | Δ                | lue or $lacktree$ | Δ                |

<sup>\*</sup> Above information is intended as a general reference guide

#### **GENERAL MEDIA INFORMATION**

- Spherical Medias are used for peening and produce smoother surface finishing.
- Angular medias chip at a part surface removing paint, rust, and scale quicker than round medias and produce a rougher surface finish and better anchor patterns for coating adhesions.
- Higher blast pressures reduce media life.
- Higher blast pressures increase production.
- Harder work pieces reduce media life.
- Dust collection keeps media clean.
- When calculating media take in account.
- Media cost and life cycles.
- Disposal fees (if blasting heavy metals use a very rercyclable media)
- Production rate of media, labor and air compressor expense.



### **BLAST MEDIAS (END)**

#### **RECOVERABLE MEDIA CYCLES**

| Media Type      | Media Life Cycles | % Breakdown |
|-----------------|-------------------|-------------|
| SILICA SAND     | 1                 | 100 %       |
| GARNET          | 3-5               | 25 %        |
| PLASTIC MEDIA   | 7-9               | 13 %        |
| GLASS BEAD      | 9-12              | 10 %        |
| SILICON CARBIDE | 9-10              | 11 %        |

| Media Type           | Media Life Cycles | % Breakdown |  |
|----------------------|-------------------|-------------|--|
| ALUMINUM OXIDE       | 10-12             | 9 %         |  |
| CERAMIC MEDIA        | 70-90             | 1.2 %       |  |
| STEEL SHOT, GRIT     | 80-100            | 1 %         |  |
| STAINLESS SHOT, GRIT | 150-225           | 0.5 %       |  |

#### **RECOVERABLE MEDIA COSTING**

| Media Cost Per Hour                | Media Cost to Blast a part                  |
|------------------------------------|---------------------------------------------|
| Hourly Delivery Rate x % Breakdown | Hourly Delivery Rate x % Breakdown          |
| x Cost per lb                      | x Cost per lb x Part cycle time (% of hour) |

Other factors in total blasting cost include: air compressors, labor, blast system costs and media disposal fee. If blasting heavy metals use a highly recyclable media.

# **OVERVIEW OF BLAST FINISHING EQUIPMENT AND ABRASIVE MEDIAS**

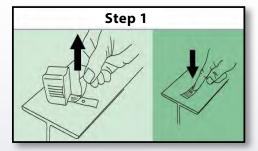
| EQUIPMENT              | ABRASIVE MEDIAS |
|------------------------|-----------------|
| Air blasting           | Spherical       |
| Blast cabinets         | Glass beads     |
| Automated cabinet      | Ceramic beads   |
| Blast rooms            | Steel shot      |
| Portable pressure pots | Stainless shot  |
| ID-OD pipe blasters    | Angular         |
| Basket blasters        | Aluminum oxide  |
| In line conveyors      | Ceramic grit    |

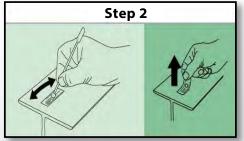
| EQUIPMENT             | ABRASIVE MEDIAS         |
|-----------------------|-------------------------|
| Wheel Blasters        | Glass grit              |
| Spinner hangers       | Plastic stripping media |
| Table blasters        | Steel grit              |
| Conveyor blasters     | Stainless steel grit    |
| Basket blasters       | Silicon carbide         |
| Wet Blasting cabinets | Media + Water           |
| Soda blasting         | Baking soda             |
| Dry ice blasters      | Dry Ice                 |

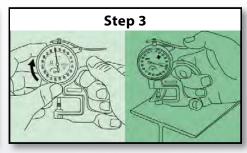


#### HOW TO MEASURE SURFACE PROFILE USING TESTEX TAPE

#### **TEST PREPARATION**


- Select a representative test site free of dust, dirt and pitting.
- Choose the appropriate grade of Testex tape refer to Inspection Instruments for details of the various scale measurement ranges.
- Peel a test tape strip from the roll a 'bull's-eye' marker dot will remain on the slip paper.
- Apply the tape to the test surface rub over the tape with afinger to ensure it is firmly adhered.


#### PERFORM THE TEST


- Using moderate to firm pressure, rub the test window with the round-tip burnishing tool
- Take care not to dislodge the test tape (caused by bumping the tool against the edge of the circular cutout window).
- Description Burnish the test window until it has uniformly darkened the color indicates the profile has been impressed into the test tape.
- Peel the test tape strip from the surface.

#### MEASURING THE TEST RESULT

- O Use a dial thickness gage with the correct specifications (i.e. accuracy, anvil spring pressure and anvil size) for replica tape refer to Inspection Instruments
- Clean the anvils and check/adjust the zero point.
- After cleaning and checking the gage zero point, adjust the dial to minus 2 mils (50 microns) (this compensates
  for the thickness of the tape carrier film and allows the profile measurement to be read directly from the gage).
- Centre the test tape between the anvils, gently allow the anvils to close on the tape, and note the reading on the dial.
- Take several readings to establish accuracy. (Reposition the tape in the anvils between each reading).







#### SOURCES OF ERROR

There are four major sources of error in determining the profile of a blast cleaned surface, which can be minimized with thefollowing suggestions.

- O Inherent Profile Variation in the surface perform at least 3 tests per 100 square feet (10 square metres) of area.
- O Contaminant particles in the anvils or tape select a clean surface; clean and check the anvils; examine the test tape; double check any questionable readings. To indicate the size significance of seemingly tiny contaminants, please note that human hair is approx. 2 mils (50 microns) thick.
- Improper Gage a good gage has an accuracy of ±0.2 mils (±5 microns), closing force of 1.5N and at least one anvil 0.25" (6.3mm) diameter.
- Deficient Impressing Technique use a profile training tool to verify the burnishing technique is correct.



#### **OUR MISSION**

#### WHO WE ARE

IST is a leading industrial manufacturer of standard and custom engineered equipment for the surface treatment industry and the solvent recycling industry.

#### **MISSION**

IST is dedicated to being an innovative and trusted supplier in the conception, fabrication and distribution of surface treatment equipment and recycling equipment.

The success of our mission relies on the following core values :

Innovation - Integrity - Quality

#### **MARKETS SERVED**

The products, technologies and industry expertise of IST are used in a wide range of manufacturing and industrial applications, including but not limited to:

- General Manufacturing
- Industrial Equipment
- Metal forming
- Aerospace and Aviation
- Rail and Transit
- Marine

- Automotive
- Petroleum
- Flexography (labelling) & Lithography
- Wood finishing
- Power & Energy
- Pharmaceutical



